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We calculate the survival probability of a diffusing test particle in an environment of diffusing particles that
undergo coagulation at ratelc and annihilation at ratela. The test particle is annihilated at ratel8 on coming
into contact with the other particles. The survival probability decays algebraically with time ast−u. The
exponentu in d,2 is calculated using the perturbative renormalization group formalism as an expansion in
e=2−d. It is shown to be universal, independent ofl8, and to depend only ond, the ratio of the diffusion
constant of test particles to that of the other particles, and on the ratiola/lc. In two dimensions we calculate
the logarithmic corrections to the power law decay of the survival probability. Surprisingly, the logarithmic
corrections are nonuniversal. The one-loop answer foru in one dimension obtained by settinge=1 is compared
with existing exact solutions for special values ofd and la/lc. The analytical results for the logarithmic
corrections are verified by Monte Carlo simulations.
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I. INTRODUCTION

The calculation of the survival probability of a test par-
ticle in reaction-diffusion systems has been studied in differ-
ent contexts such as site persistence[1], walker persistence
problems[2–6], polydispersity exponents in models of ag-
gregation[6–9], and predator-prey models[10,11]. The ap-
proach to these problems has mostly been based on studying
exactly solvable limiting cases or using the mean field ap-
proximation and its improvements such as the Smoluchowski
approximation[12,13]. In recent years, field theoretic meth-
ods have proved successful in providing a general frame-
work to understand these problems. In particular, the renor-
malization group analysis has been instrumental both in
identifying the universal persistent features of reaction-
diffusion systems and in extracting quantitative results about
persistence exponents which could not be obtained using
other methods[2,6,9,11,14–16]. In this paper, we apply field
theoretic methods to the problem of the survival probability
of diffusing testB particles in a background of diffusingA
particles undergoing the reactions

A + A→
lc

A,

A + A→
la

Ø,

A + B→
l8

A. s1d

The above reaction has been studied in the context of
persistence. In one dimension and whenB particles are sta-
tionary, calculating the survival probability ofB particles is

equivalent to calculating the fraction of spins that have not
flipped up to timet in the q-state Potts model evolving via
zero temperature Glauber dynamics, whereq=lc/la+2 [1].
The more general problem in which theB particles are mo-
bile with a diffusion constant equal tod times the diffusion
constant of theA particles has been studied in Refs.
[2,3,6,17]. The density ofB particles then decays with time
as t−usd,Qd, whereQ=slc+lad / slc+2lad. As Q varies from
1/2 to 1, the ratiolc/la varies from 0 to`. The known
results forusd ,Qd are briefly reviewed below.

When the dimensiond is greater than the upper critical
dimension—two in this case—the decay exponents are ob-
tained by solving the mean field rate equations with an ap-
propriately renormalized lattice-dependent reaction rate. In
dimensionsdø2, fluctuation effects become important, and
usd ,Qd is no longer given by the rate equations. Exact solu-
tions are one way of calculating exponents in one dimension.
When d=0, by mapping the calculation of the persistence
probability to a calculation of empty interval probabilities in
the A+A→A model, it was shown that[1]

us0,Qd =
2

p2Fcos−1S1 − 2Q
Î2

DG2

−
1

8
, d = 1. s2d

Attempts to generalize the methods used in Ref.[1] to arbi-
trary d were successful only in determining the values of
sdu /dQduQ=0 and sdu /dddud=0 [3]. Another solvable limit is
Q=1, when annihilation is absent. In this case, the problem
reduces to a three-particle problem which can be solved ex-
actly to yield [18]

usd,1d =
p

2 cos−1fd/s1 + ddg
, d = 1. s3d

More general ways of understanding the effects of fluctua-
tion in low dimensional reaction-diffusion systems include
the Smoluchowski approximation[12,13], which effectively
reduces to the replacement of the reaction rates in the rate
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equations by diffusion-renormalized values, and the renor-
malization group formalism. The exponentusd ,1 /2d was
calculated using the Smoluchowski approximation in Ref.
[17]. The advantage of the Smoluchowski approximation is
its computational simplicity. However, it is not clear how to
improve this approximation in a systematic manner. Also, it
was shown in Refs.[6,9] that, while this approach gives an
answer close to the actual one forQ=1/2, it becomes in-
creasingly worse asQ nears 1. The field theoretic approach
using the renormalization group formalism currently pro-
vides the only systematic way of calculating the decay expo-
nents below the critical dimension. The exponentusd ,1 /2d
was calculated using field theoretic methods in Ref.[2].
However, the renormalization group scheme used was com-
plicated and did not capture the right logarithmic corrections
(see Sec. IV B for a more detailed discussion). us1,Qd was
calculated as an expansion ins2−dd in [6,9] in the context of
domain wall persistence in the Potts model.

In this paper, we extend the formalism developed in Refs.
[6,9] to calculateusd ,Qd for arbitrary d and Q to ordere,
wheree=2−d. In particular we show that

u =
Qs1 + dd

2
F2 − eH3

2
+ ln

1 + d

2
+

Qs1 + ddfsdd
2

J + Ose2dG ,

s4d

where

fsdd = 1 − 2d + 2d lnS 2

1 + d
D

+ s1 − d2dE
sd−1d/sd+1d

1

du
lns1 − ud

u
. s5d

The function fsdd increases froms1−p2/4d to 0 as d in-
creases from 0 tò . In two dimensions, we calculate loga-
rithmic corrections to the power law decay and show that

kbl , t−Qs1+ddlnstda, s6d

wherekbl is the mean density ofB particles and

a =
Qs1 + dd

2
F3 + Qs1 + ddfsdd + 2 ln

1 + d

2
G

+ 2pQs1 + dd2S 1

l8
−

2

s1 + ddsla + lcd
D , s7d

with the functionf as defined in Eq.(5). A surprising feature
of Eq. (7) is its nonuniversality for finite reaction rates
l ,l8,`. In this casea explicitly depends on both reaction
rates. This is contrary to the usual belief that below the upper
critical dimension the kinetics is diffusion limited and hence
one may set reaction rates to infinite. Most exact solutions
make use of this simplifying assumption. The above result
serves as a counterexample.

The rest of the paper is organized as follows. In Sec. II,
the model is defined. In Sec. III, the rate equation approach
is compared with the Smoluchowski approximation. The sur-
vival probability is calculated to one-loop precision. In Sec.
IV, the renormalization group analysis of the problem is car-

ried out and Eqs.(4), (6), and(7) are derived. The one-loop
answer foru is compared with the result of Smoluchowski
approximation and also with known exact results in one di-
mension for special values ofd andQ. We also compare the
analytical results with the results from numerical simula-
tions. First, the predictions for the logarithmic corrections to
the power law decay are confirmed numerically in the limit
of instantaneous reactions. Second, the nonuniversality of
logarithmic corrections for finite reaction rates is verified.
Finally, we end with a summary and conclusions in Sec. V.

II. THE MODEL

Consider ad-dimensional hypercubic lattice whose sites
may be occupied byA particles andB particles. Multiple
occupancy of a site is allowed. Given a configuration of par-
ticles, the system evolves in time as follows.(i) At rate
D / s2dd, anA particle hops to a nearest neighbor site.(ii ) At
rate dD / s2dd, a B particle hops to a nearest neighbor site.
(iii ) At rate la, two A particles at the same site annihilate
each other.(iv) At rate lc, two A particles at the same site
coagulate together, thus reducing the number ofA particles
by 1. (v) At ratel8, a B particle is absorbed by anA particle
at the same site. The initial numbers ofAsBd particles at the
lattice sites are chosen independently from a Poisson distri-
bution with intensitya0sb0d.

The action corresponding to the continuous limit of the
model can be derived from the master equation using Doi’s
formalism[19–21]. We skip the derivation and give the final
result. The action is

S=E dtE ddxSās]t − ¹2da + b̄s]t − d¹2db +
l

2Q
āa2 +

l

2
ā2a2

+ l8b̄ab+ l8āb̄ab− sāa0 + b̄b0ddstdD s8d

wherea andb are complex fields corresponding toA andB
particles, the diffusion constantD has been set equal to 1,
and

Q =
lc + la

lc + 2la
, s9d

l = la + lc. s10d

The knowledge of all the correlation functions of the fields
a,b allows one to construct all the correlation functions of
local densities ofA and B particles[22]. In particular, the
mean density ofA andB particles atsxW ,td is equal tokasxW ,tdl
andkbsxW ,tdl, respectively, wherek¯l denotes the functional
average with respect to the functional measure Eq.(8).

The action can be brought into a more convenient form by

rescaling the fields as follows:sā,b̄d→Q−1sā,b̄d ,sa,bd
→Qsa,bd ,sa0,b0d→Qsa0,b0d, andsl ,l8d→2sl ,l8d. Then
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S=E dtE ddxfās]t − ¹2da + b̄s]t − d¹2db + lāa2 + lā2a2

+ 2l8Qb̄ab+ 2l8āb̄ab− sāa0 + b̄b0ddstdg . s11d

The Feynman diagrams corresponding to the action in Eq.
(11) are shown in Fig. 1.

We are interested in the mean density ofB particles in the
limit of large time, as the survival probability is proportional
to the mean density. The evolution of mean density ofA
particleskal is independent of the statistics ofB particles and
decays at large timest as [14]

kal , 5t−d/2, d , 2,

t−1lnstd, d = 2,

t−1, d . 2.
6 s12d

III. COMPUTATION OF THE PERSISTENCE EXPONENT
USING MEAN FIELD AND SMOLUCHOWSKI

APPROXIMATIONS

The perturbative expansion ofkbl in powers ofl can be
constructed using the Feynman diagrams shown in Fig. 1
[23]. Diagrammatically,kalskbld is the sum of all Feynman
diagrams with one outgoinga sbd line, respectively. Clearly,
there is an infinite number of diagrams contributing tokal
and kbl. These diagrams can be grouped together according
to the number of loops that they contain, thus giving rise to
the loop expansion. Lete=2−d. A simple combinatorial ar-
gument shows that the contribution from a diagram withn
loops is proportional togstdn, wheregstd=lte/2 [15]. When
e,0, the main contribution tokal andkbl comes from prop-
erly renormalized tree level diagrams(diagrams without
loops). Whene.0, the loop expansion fails since for large
times gstd is no longer a small perturbation parameter. We
therefore conclude that 2 is the upper critical dimension. For
d,2 we will use the formalism of perturbative renormaliza-
tion group to convert the loop expansion into ane expansion
and calculate the scaling exponents as a series ine.

A. Tree-level diagrams

In d,2 and small times, tree diagrams give the main
contribution to the survival probability. Letkalmf and kblmf

be mean field densities given by the sum of contributions
coming from tree diagrams with a single outgoinga line and

b line, respectively. We denotekalmf andkblmf by thick solid
lines and thick dashed lines, respectively. The integral equa-
tions satisfied bykalmf and kblmf are presented in diagram-
matic form in Figs. 2(a) and 2(b) correspondingly. Analyti-
cally,

kastdlmf = a0 − lE
0

t

dt8kast8dlmf
2 ,

kbstdlmf = b0 − 2l8QE
0

t

dt8kast8dlmfkbst8dlmf.

After differentiating with respect to time, these equations
can be rewritten in differential form as

]tkal = − lkal2, s13d

]tkbl = − 2Ql8kblkal, s14d

in which one can easily recognize the rate equations of the
model. Thus, the identification of tree-level truncation with
mean field approximation is justified.

Equations(13) and (14) are easily solved, yielding

kastdlmf =
a0

1 + la0t
, s15d

kbstdlmf =
b0

s1 + la0td2Ql8/l
, s16d

wherea0 andb0 are the initial densities ofA andB particles,
respectively. Thus,

FIG. 1. Propagators and vertices of the theory.

FIG. 2. Diagrammatic form of mean field equations for(a) mean
particle densitykbl, (b) mean density ofB particleskbl, (c) Gmf

NN,
and (d) Gmf

PP.
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usd,Qd = 2Q
l8

l
, d . 2. s17d

The result is explicitly dependent onl8 ,l while being inde-
pendent ofd and describes the reaction-limited regime of the
problem. It should be mentioned here that the above result is
valid only in the limit when the reaction rates are the small-
est parameters in the problem, i.e.,l ,l8! l0

d−2, where l0 is
the lattice spacing. In the other limit when the lattice spacing
is the smallest parameter in the problem, the exponents get
modified to[24]

usd,Qd = Qs1 + dd, l0
d−2 ! l,l8, d . 2. s18d

In order to estimate the validity of the mean field approxi-
mation in dø2, the one-loop corrections to the mean field
answer have to be evaluated. In calculating loop corrections
to Eqs. (15) and (16), we are faced with the problem of
summing over an infinite number of diagrams containing a
given number of loops. This problem can be simplified by
introducing mean field propagators, which are sums of all
tree diagrams with one incoming line and one outgoing line.
Expressed in terms of these mean field propagators, there are
only a finite number of diagrams with a fixed number of
loops.

Let Gmf
NN andGmf

PP be mean field propagators. The integral
equations satisfied by them are presented in diagrammatic
form in Figs. 2(c) and 2(d). These equations have the follow-
ing analytic forms:

Gmf
NNs2u1d = G̃1s2u1d − 2lE

t1

t2

dtE
Rd

dxW G̃1s2uxW,td

3kastdlGmf
NNsxW,tu1d, s19d

Gmf
PPs2u1d = G̃ds2u1d − 2l8QE

t1

t2

dtE
Rd

dxW G̃ds2uxW,td

3kastdlGmf
PPsxW,tu1d, s20d

where1=sxW1,t1d ,2=sxW2,t2d, andG̃D is the Green’s function
of the linear diffusion equation with diffusion constantD.
The solutions to these equations are

Gmf
NNs2u1d = S kast2dlmf

kast1dlmf
D2

G̃1s2u1d, s21d

Gmf
PPs2u1d = S kast2dlmf

kast1dlmf
D2Ql8/l

G̃ds2u1d. s22d

B. Smoluchowski approximation

Before presenting the renormalization group calculation
of usd ,Qd, we briefly discuss a method commonly used to
study fluctuation effects in reaction-diffusion systems,
namely, the Smoluchowski approximation. The essential idea
of the Smoluchowski approach is to relate the reaction rates
l and l8 to the diffusion rates. One assumes that particles
react instantaneously when they come within a fixed radius

of each other(see [2,17] for a more detailed discussion).
Knowing the first return probabilities of random walks, one
obtains ford,2

l , const3 td/2−1, s23d

l8 , const3 S1 + d

2
Dd/2

td/2−1. s24d

Note that the factors1+dd /2, which often appears in our
answers, is just the effective diffusion coefficient in the prob-
lem. In d=2 additional logarithmic corrections appear and

l ,
const

lnstd
, s25d

l8 ,
const3 s1 + dd

2 lnhfs1 + dd/2gtj
. s26d

Replacingl andl8 in Eqs.(13) and(14) by the effective
reaction reaction rates, and solving forkbl, we obtain

kblS, 5t−dQfs1 + dd/2gd/2
, d , 2,

S lnstd
t
DQs1+dd

flnstdgQs1+ddlnfs1+dd/2g, d = 2, 6
s27d

wherekblS denotes the mean density ofB particles obtained
from the Smoluchowski approximation. In order to obtain
Eq. (27) we used the decay laws for the density ofA particles
as in Eq.(12), which also follow from the Smoluchowski
approximation. In particular, the Smoluchowski theory’s pre-
diction for u is

uSsd,Qd = dQS1 + d

2
Dd/2

, d , 2. s28d

This answer foru depends ond ,Q, and the space dimension-
ality d. It does not, however, depend onl and l8. Thus,
unlike the mean field answer Eq.(17), it has the correct
universality properties for a quantity describing reaction-
diffusion systems in the diffusion-limited regime. However,
the Smoluchowski result differs considerably from the cor-
rect result whenQ nears 1. For example, in one dimension
uSs1,1d=1.0 whileus1,1d=1.5 [see Eq.(3)]. For more com-
parisons, see Sec. IV A. It is not clear how one can improve
the Smoluchowski approximation. The renormalization
group formalism, although more involved, provides a sys-
tematic way to go beyond the Smoluchowski approximation.

C. One-loop diagrams

The rate equation results do not depend on the diffusion
coefficients of the particles or the dimensionality of the am-
bient space. These parameters appear in the one-loop correc-
tions to the tree-level answers. Using the mean field propa-
gators and densities, it is easy to classify all the one-loop
diagrams contributing tokbl. These are shown in Fig. 3[25].
Skipping the computations, we present the final answers for
contributions corresponding to each of the Feynman dia-
grams in the limita0→`:
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sad =
32Ql82b0t

e/2

lsa0ltd2Ql8/lf4ps1 + ddgd/2e2se + 2d
, s29d

sbd =
8Q2l82b0s1 + ddte/2

lsa0ltd2Ql8/lf4ps1 + ddgd/2e
ffsdd + Osedg, s30d

scd =
− 256Ql8b0t

e/2

sa0ltd2Ql8/ls8pdd/2e2se + 2d2se + 4d
, s31d

where (a), (b), and (c) refer to the contributions from dia-
grams in Figs. 3(a)–3(c), respectively, and

fsdd = 1 − 2d + 2d lnS 2

1 + d
D

+ s1 − d2dE
sd−1d/sd+1d

1

du
lns1 − ud

u
. s32d

Adding these one-loop contributions to the mean field an-
swer Eq.(16), we obtain in the limita0→`

kbstdl =
A

t2Ql8/l
F1 +

8Ql8te/2

s4pdd/2e
H 4l8

ls1 + ddd/2

1

ese + 2d

−
32

2d/2

1

ese + 2d2se + 4d
+

Ql8s1 + dde/2fsdd
2l

JG
+ two and higher loop corrections, s33d

where A=b0/ sa0ld2Ql8/l. We see that ifl,l8, then the
mean field answer Eq.(17) is correct in d,2 only if
Qlte/2!1. Clearly, this condition breaks down in the limit of
large times ind,2.

IV. PERTURBATIVE COMPUTATION OF u„d ,Q… NEAR
d=2 USING THE RENORMALIZATION GROUP

METHOD

In this section, we calculate the large time behavior ofkbl.
The loop expansion forkbstdl fails at large times indø2. To
extract the large time behavior ofkbstdl in dø2 we will use
the formalism of the perturbative renormalization group.

The renormalization group formalism used in Refs.[6,9]
for the cased=1 was based on the Callan-Symanzik equa-

tions for the mean density ofB particles. There were two
relevant couplings for the theory: the reaction ratel and the
initial density b0. The anomalous dimension ofkbstdl was
attributed to the renormalization ofb0.

This approach turns out to be very complicated whend
Þ1. This is due to the explicit dependence of the classical
scaling dimension ofkbstdl on l and l8. Further complica-
tions arise due to noncommutativity of thee→0 and a0
→` limits, which leads to an apparent order-1/e2 singularity
in the one-loop correction tokbstdl [see Eq.(33)].

These problems are circumvented by analyzing the large
time asymptotic behavior of the logarithmic derivative of
kbstdl, rather thankbstdl itself. It follows from Eq.(33) that

t]thlnfkbstdlgj = Pstd, s34d

where

Pstd = − 2Q
l8

l
+

4Ql8te/2

s4pdd/2 H 4l8

ls1 + ddd/2

1

ese + 2d

−
2−d/232

ese + 2d2se + 4d
+

Ql8s1 + dde/2fsdd
2l

J + Osl2d.

s35d

The large time asymptotic behavior ofPstd can be obtained
by solving the Callan-Symanzik equation with initial condi-
tions given by the right-hand side of Eq.(35) regularized at
some reference timet0 (see Ref.[22] for a review). The
coefficients of the Callan-Symanzik equation are determined
by the law of renormalization of all the relevant couplings of
the theory. Power counting analogous to that carried out in
Ref. [9] shows that there are only two relevant couplings of
the theory which determine the large time behavior ofPstd
in dø2: the reaction ratesl and l8. We mention here that
Pstd is simply related to the polarization operator used in
Ref. [9].

Let g0=lt0
e/2 and g08=lt0

e/2 be the dimensionless reaction
rates. We chooset0 in such a way thatg0,g08!1. The way in
which reaction rates get renormalized by interactions has
been worked out in Ref.[2,14]. The renormalized reaction
ratesgR andgR8 are related tog0 andg08 as follows:

gR =
g0

1 + g0/g*
, s36d

gR8 =
g08

1 + g08/g*8
. s37d

Here g* and g*8 are the nontrivial fixed points of the renor-
malization group flow in the space of effective coupling con-
stants, and are given by

g* =
s8pdd/2

2Gse/2d
, s38d

FIG. 3. One-loop corrections to the mean field result forkbl.
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g*8 =
f4ps1 + ddgd/2

2Gse/2d
, s39d

whereGsxd is the Euler Gamma function. The renormaliza-
tion of both coupling constants is due to the same physical
effect—the recurrence of random walks indø2.

Pst0d expressed in terms ofgR and gR8 has the following
form:

Pst0d = − 2Q
gR8

gR
+

QgR8

p
FgR8sg − 1d

gRs1 + dd
+

5 − 2g

4
+

QgR8 fsdd
2gR

+ OsedG + OsgR
2d, s40d

whereg is the Euler constant.Pst0d regarded as a function of
gR andgR8 is nonsingular ate=0. As a result this expression is
valid for dø2. The lack oft0 dependence ofPstd for t. t0 is
expressed by the following renormalization group(Callan-
Symanzik) equation:

Ft
]

] t
+

bsgRd
2

]

] gR
+

bsgR8d
2

]

] gR8
GPstd = 0, s41d

where bsgRd=−2t0]gR/]t0 and bsgR8d=−2t0]gR8 /]t0 are the
beta functions

bsgRd =
gRsgR − g*de

g*
, s42d

bsgR8d =
gR8sgR8 − g*8de

g*8
. s43d

We will now solve Eq.(41) with the initial condition given
by Eq. (40) to obtain the large time asymptotic behavior of
P. We then extract the large time asymptotic behavior of
kbstdl by solving Eq.(34).

A. Survival probability in d,2

At large times, the solutions of the Callan-Symanzik
equation(41) are governed by the stable fixed points of theb
functions. Ind,2, these aregR=g* andgR8 =g*8. It then fol-
lows that

Pstd = − 2Qs1 + dd + eQs1 + ddFln
1 + d

2
+

3

2
+ Q

1 + d

2
fsddG

+ Ose2,t−e/2d. s44d

Substituting Eq.(44) into Eq. (34) and solving forkbstdl,
we obtain theOsed result foru:

u =
Qs1 + dd

2
F2 − eH3

2
+ ln

1 + d

2
+

Qs1 + ddfsdd
2

J + Ose2dG ,

s45d

where the functionfsdd is as in Eq.(32).
We now compare the one dimensional result obtained by

putting e=1 in Eq. (45) with exact results in one dimension
for special values ofd andQ. The exact result forus0,Qd in

one dimension is given in Eq.(2), while that for usd ,1d is
given in Eq.(3). Figures 4 and 5 show the results ford=0
and Q=1, respectively. Thee-expansion result is seen to
compare very well with the exact result. On the other hand,
the Smoluchowski results fail forQ larger than 1/2 when
d=0, and for alld whenQ=1. It should be noted that when
d becomes large thee expansion will fail. This is because in
deriving thee expansion we wrote Eq.(28) as a series ine to
first order. This expansion fails whend is large.

It is worth mentioning that, even though the persistence
exponent turns out to be universal, the amplitude in the term
governing corrections to scaling is nonuniversal. The correc-
tions toPstd due to nonconvergence to a fixed point have the
form C/ te/2, where the constantC depends on the bare reac-
tion rates. Solving Eq.(34) with Pstd modified by these extra
terms, we find corrections to scaling of the form
−s2C/edt−u−e/2. In two dimensions a similar mechanism leads
to nonuniversality of the logarithmic corrections(see Sec.
IV B ).

FIG. 4. The one-loop answer[Eq. (45)] is compared with the
exact result in one dimension whend=0 [Eq. (2)]. The solid line
corresponds to the exact answer, the dashed line to one loop, and
the dot dashed line to the Smoluchowski result[Eq. (27)].

FIG. 5. The one-loop answer[Eq. (45)] is compared with the
exact result in one dimension whenQ=1 [Eq. (3)]. The solid line
corresponds to the exact answer, the dashed line to one loop, and
the dot dashed line to the Smoluchowski result[Eq. (27)].
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B. Survival probability in d=2

The upper critical dimension of our model is 2. The non-
trivial fixed points of theb functions Eqs.(42) and (43)
vanish atd=2. It is then expected that the rate equation re-
sults give the correct large time behavior of the mean densi-
ties, perhaps modulo logarithmic corrections. This turns out
to be incorrect. The complication comes from the fact thatu
predicted by the mean field theory[see Eq.(17)] is nonuni-
versal and depends on the ratio of coupling constantsgR and
gR8. Each of these couplings is marginally relevant in two
dimensions and flows under renormalization group transfor-
mations to 0 asflnstdg−1. Their ratio flows to a finite univer-
sal value which determines the algebraic decay of the sur-
vival probability. However, the deviation from this universal
value vanishes with time asC/ lnstd, whereC is a nonuniver-
sal constant. This results in nonuniversal logarithmic correc-
tions to the universal power law decay of survival probabil-
ity.

We need to solve the Callan-Symanzik equation(41) with
coefficients calculated atd=2:

bsgdd=2 =
g2

2p
, s46d

bsg8dd=2 =
g82

ps1 + dd
. s47d

Then Eq.(41) reduces to

Ft
]

] t
+

gR
2

4p

]

] gR
+

gR8
2

2ps1 + dd
]

] gR8
GPstd = 0, s48d

which has to be solved with the initial condition given by Eq.
(40) at t= t0,e=0. The solution is

Pstd = − Qs1 + dd +
2Qs1 + dd

lnst/t0d F3

4
+

Q

2
fsdd + ps1 + dd

3S 1

gR8
−

2

s1 + ddgR
DG + OS 1

ln2stdD . s49d

The nonuniversal term in Eq.(49) is proportional to
1/gR8 −2/fs1+ddgRg. It is convenient to express this ampli-
tude in terms of bare couplings. In two dimensions,

1

gR8
−

2

s1 + ddgR
=

1

g08
−

2

s1 + ddg0
+

lnfs1 + dd/2g
2ps1 + dd

. s50d

In d,2, Eq. (50) has to be modified by omitting the loga-
rithmic term on the right hand side.

Solving Eq. (34) with Eq. (49) substituted for the right
hand side and taking Eq.(50) into account, one finds that

kbstdl = const3
fgRlnst/t0dga

sgRtdQs1+dd F1 + OS 1

lnst/t0dDG , s51d

where

a =
Qs1 + dd

2
F3 + Qs1 + ddfsdd + 2 ln

1 + d

2
G

+ 2pQs1 + dd2S 1

l8
−

2

s1 + ddlD . s52d

Thus, in two dimensions, the power law exponent is univer-
sal and independent ofl and l8. However, the logarithmic
corrections are nonuniversal and depend on the microscopic
reaction ratesl8=g08 and l=g0. However, most simulations
are done in the limit when the reactions are instantaneous. In
this limit, the nonuniversal term in Eq.(52) is zero.

The logarithmic corrections in Eq.(52) are different from
the logarithmic corrections calculated for theQ=1/2 case in
Ref. [2]. This discrepancy is due to the fact that only renor-
malized tree-level computations were done in[2], while to
obtain the correct logarithmic dependence one-loop correc-
tions have to be taken into account.

We also mention that, if one were to ignore the contribu-
tion from one-loop diagrams, then the logarithmic correc-
tions would be identical with the logarithmic corrections ob-
tained from the Smoluchowski approximation[see Eq.(27)],
and will be different from the logarithmic corrections ob-
tained from the renormalized tree level as in Ref.[2].

We now study logarithmic corrections numerically. First,
consider the case when the microscopic reactions are instan-
taneous, i.e.,l=l8=`. In this limit, the nonuniversal term in
Eq. (52) is equal to zero. The Monte Carlo simulations were
done for this case on a two-dimensional lattice of size
320033200 with periodic boundary conditions. As the reac-
tions are instantaneous, the maximum number of particles at
a site is 1. The simulations were done ford=0, i.e., immobile
B particles. The results forQ=0.5 andQ=1.0 are shown in
Figs. 6 and 7, respectively. ForQ=0.5,a=0.23±0.03, which
compares well with the theoretical value of approximately
0.22 in Eq.(52). Note that the renormalized tree-level an-

FIG. 6. The variation of the mean density ofB particles in two
dimensions with time. The simulations were done on a 3200
33200 lattice forQ=0.5 andd=0. The data have been averaged
1000 times. In the inset, the variation ofkblÎt with time is shown.
The power of the logarithm in the best fit is 0.23±0.03. The fitted
curve cannot be distinguished from the data.
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swer is a=0.5 [2]. For Q=1.0, the numerical value is
0.08±0.04, which compares well with the theoretical value
of approximately 0.07. This answer also deviates signifi-
cantly from the renormalized tree-level value of 1.0.

Second, we study the logarithmic corrections for finite
reaction rates to test the nonuniversal term in Eq.(52). In this
case the lattice size is 9003900. The results ford=0,Q
=0.5, and different reaction rates are shown in Fig. 8. Ifl
=16,l8=8, then the nonuniversal term in Eq.(52) is zero
anda<0.22 as in the case of infinite reaction rates. This is
consistent with the dashed line in Fig. 8 being parallel to the
solid line. If however,l=8,l8=8, then the theoretical value
of a is −0.17. While the numerical precision of our experi-
ment is insufficient for a reliable determination of the abso-
lute value ofa, its sign is negative, in line with the theoret-
ical prediction.

V. SUMMARY AND CONCLUSIONS

In summary, we calculated the large time behavior of the
survival probability of a test particle in a system of coagu-
lating and annihilating random walkers indø2. In one di-
mension, this generalizes the site persistence problem in the
q-state Potts model evolving via zero-temperature Glauber
dynamics. The survival probability was shown to decay as a
power law. Ind,2, the exponentu characterizing this power
law was shown to be universal, in the sense that it depends

only on d andQ and is independent ofl ,l8. The renormal-
ization group formalism provided a systematic way of calcu-
lating the survival probability for the entire parameter space.

In two dimensions, we computed the logarithmic correc-
tions to the power law decay. It was shown that to compute
the correct logarithmic factors one had to include contribu-
tions from one-loop diagrams and not just the tree-level dia-
grams as was done in earlier work. The behavior of the sur-
vival probability in two dimensions is surprising. First, the
power law decay is universal and thus does not coincide with
the rate equation result, even thoughd=2 is the upper critical
dimension. Second, the logarithmic corrections to the power
law are nonuniversal and depend on the reaction rates. This
is contrary to the general expectation that kinetics of
reaction-diffusion systems are diffusion limited below the
upper critical dimension. Both the universality of the power
law and the nonuniversality of logarithmic corrections in two
dimensions can be traced to the fact that the rate equation
exponent is given by the ratio of microscopic rates, which
are both marginally relevant in two dimensions.

From the renormalization group point of view, by study-
ing the logarithmic derivative of the mean density ofB par-
ticles, we have considerably simplified the schemes used in
Refs.[2,6,9]. While the exponents are calculated only up to
first order in e, the renormalization group method remains
the only systematic way of computing the exponents when
an exact solution is not available.
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