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We calculate the survival probability of a diffusing test particle in an environment of diffusing particles that
undergo coagulation at ralg and annihilation at rat®,. The test particle is annihilated at raté on coming
into contact with the other particles. The survival probability decays algebraically with tinte?.a3he
exponentd in d<2 is calculated using the perturbative renormalization group formalism as an expansion in
e=2-d. It is shown to be universal, independent)df and to depend only o®, the ratio of the diffusion
constant of test particles to that of the other particles, and on thexgitlq. In two dimensions we calculate
the logarithmic corrections to the power law decay of the survival probability. Surprisingly, the logarithmic
corrections are nonuniversal. The one-loop answe#iarone dimension obtained by settieg 1 is compared
with existing exact solutions for special values &fand \,/\.. The analytical results for the logarithmic
corrections are verified by Monte Carlo simulations.
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[. INTRODUCTION equivalent to calculating the fraction of spins that have not
flipped up to timet in the g-state Potts model evolving via

The calculation of the survival probability of a test par- .
ticle in reaction-diffusion systems has been studied in differ2S™© temperature Glauber dynamics, wherac/Aq+2 [1].

. . . The more general problem in which tlBeparticles are mo-
ent contexts such as site peraste{ﬂ:}a wal_ker persistence bile with a diffusion constant equal 6 times the diffusion
problems[2-6], polydispersity exponents in models of ag-

. constant of theA particles has been studied in Refs.
gregation[6-9], and predator-prey mode[40,11. The ap- [2,3,6,17. The density o particles then decays with time

proach to these problems has mostly been based on studyi all 60 where Q=(Ao+A,)/(\o+2\,). As Q varies from

exactly solvable limiting cases or using the mean field ap- ; .
proximation and its improvements such as the Smoluchowsk1|/2 to 1, the ratiokc/), varies from O tox. The known

approximation[12,13. In recent years, field theoretic meth- res\;JVI'rt]s fortﬁ(é,d(_)) are_brruljefly rewetzwefrl] bel;)k\:v ' itical
ods have proved successful in providing a general frame-, en et |m.ents;9 IS gre?herd an the uppert critica b
work to understand these problems. In particular, the renorg'mens'on_ WO In this case—Ihe decay exponents are ob-

malization group analysis has been instrumental both jfined by solving the mean field rate equations with an ap-
identifying the universal persistent features of reaction_proprlately renormalized lattice-dependent reaction rate. In

diffusion systems and in extracting quantitative results abou |men5|_onsds2, quct_uauon effects becomg important, and
(8,Q) is no longer given by the rate equations. Exact solu-

persistence exponents which could not be obtained usin . . . .

other methods$2,6,9,11,14—1F In this paper, we apply field ons are one way of qalculatmg exponents in one d|men3|on.

theoretic methods to the problem of the survival probabilityVhen 6=0, by mapping the calculation of the persistence
probability to a calculation of empty interval probabilities in

of diffusing testB particles in a background of diffusing .
particles undergoing the reactions the A+A— A model, it was shown thdtl]

2 1-2Q\|? 1
N — =1 —
c 0,Q=— -—, d=1. 2
Arala n00=5es( 12| ?
" Attempts to generalize the methods used in REfto arbi-
A+A-Q, trary & were successful only in determining the values of

(d6/dQ)|q=o and (d6/ds)| s [3]. Another solvable limit is
N Q=1, when annihilation is absent. In this case, the problem
A+B_A. (1)  reduces to a three-particle problem which can be solved ex-
actly to yield[18]
The above reaction has been studied in the context of
persistence. In one dimension and wi&particles are sta- 051)=————— d= 3)
tionary, calculating the survival probability & particles is 2 cos'[8I(1+0)]

More general ways of understanding the effects of fluctua-

tion in low dimensional reaction-diffusion systems include
*Electronic address: rrajesh@brandeis.edu the Smoluchowski approximatiori2,13, which effectively
TElectronic address: olegz@maths.warwick.ac.uk reduces to the replacement of the reaction rates in the rate
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equations by diffusion-renormalized values, and the renorried out and Eqs(4), (6), and(7) are derived. The one-loop
malization group formalism. The exponefts,1/2) was answer ford is compared with the result of Smoluchowski
calculated using the Smoluchowski approximation in Refapproximation and also with known exact results in one di-
[17]. The advantage of the Smoluchowski approximation ismension for special values éfandQ. We also compare the
its computational simplicity. However, it is not clear how to analytical results with the results from numerical simula-
improve this approximation in a systematic manner. Also, ittions. First, the predictions for the logarithmic corrections to
was shown in Refd6,9] that, while this approach gives an the power law decay are confirmed numerically in the limit
answer close to the actual one f@=1/2, it becomes in- of instantaneous reactions. Second, the nonuniversality of
creasingly worse a® nears 1. The field theoretic approach logarithmic corrections for finite reaction rates is verified.
using the renormalization group formalism currently pro-Finally, we end with a summary and conclusions in Sec. V.
vides the only systematic way of calculating the decay expo-

nents below the critical dimension. The exponét#,1/2)

was calculated using field theoretic methods in Rei. Il. THE MODEL

However, the renormalization group scheme used was com- . . . _ . .
plicated and did not capture the right logarithmic corrections C0nsider ad-dimensional hypercubic lattice whose sites
(see Sec. IV B for a more detailed discussiof(1,Q) was MY be occupied by particles andB particles. Multiple
calculated as an expansion(id—d) in [6,9] in the context of occupancy of a site is aIIowgd. Qwen a conflggratlon of par-
domain wall persistence in the Potts model. ticles, the system evolves in time as follow$) At rate

In this paper, we extend the formalism developed in Refsp/(Zd)’ anA particle hops to a nearest neighbor siie). At

[6,9] to calculated(s,Q) for arbitrary 5 and Q to order e, rﬂte oD/ (2d), a B particle .hops to a nearest neighbo_r .site.
wheree=2—d. In particular we show that (iii) At rate _)\a, two A particles at thg same site annlhllgte
€ P each other(iv) At rate A\, two A particles at the same site

1+6 3 1+6 1+5)f(S coagulate together, thus reducing the numbeA gfarticles
e ){2_6{ el )()}m(ez)] gulate tog g qf

2 2 +1In 2 2 by 1. (v) At rat_ex’, aB_pg_rticIe is absorbed by a@u particle
at the same site. The initial numbersA(B) particles at the
(4) lattice sites are chosen independently from a Poisson distri-

where bution with intensityay(by).
The action corresponding to the continuous limit of the
f(8)=1-25+ 25|n<i> model can be derived from the master equation using Doi's
+6 formalism[19-21. We skip the derivation and give the final
1 In(1 - u) result. The action is
+(1-8 du——-. (5
(8-DI(5+1) u

_ — ) A
_ d _v2 s lha M2, Mo
The function f(8) increases from(1-72/4) to 0 asé in- S_f dtf d X<a((9‘ V9a+b(g, - ovi)b+ 2Qaa * 2a a

creases from 0 tee. In two dimensions, we calculate loga-

rithmic corrections to the power law decay and show that +\'bab+ \"abab - (aa, + bby) 5(t)> (8)
(b) ~ 7 ¥*In(y)”, (6)
where(b) is the mean density @ particles and wherea andb are complex fields corresponding Aoand B
particles, the diffusion constam has been set equal to 1,
a:@{3 +Q(1+5)f(5)+2|n17+5] Ll
1 2 Act g
+277Q(1+5)2<;—m>, (7) Q—)\C+—2)\a, (9)

with the functionf as defined in Eq(5). A surprising feature
of Eq. (7) is its nonuniversality for finite reaction rates NEDVED W (10)
N\, N\ <o, In this casex explicitly depends on both reaction

rates. This is contrary to the usual belief that below the uppe. . . '
critical dimension the kinetics is diffusion limited and henceli-he knowledge of all the correlation functions of the fields

one may set reaction rates to infinite. Most exact solutionf’b allows one to construct all the correlation functions of

make use of this simplifying assumption. The above resulg;zlnddeenss'ti'tesogﬁgnzréd er?iilrgggiéztz)].islg %ZT'&J;?; tt)r;e
serves as a counterexample. y P ' d '

The rest of the paper is organized as follows. In Sec. jjand(b(x,1)), respectively, wher¢ --) denotes the functional

the model is defined. In Sec. IIl, the rate equation approacRverage with respect to the functional measure (Bg.

is compared with the Smoluchowski approximation. The sur- The action can be brought into a more convenient form by
vival probability is calculated to one-loop precision. In Sec.rescaling the fields as follows(a,b)—Q(a,b),(a,b)

IV, the renormalization group analysis of the problem is car-— Q(a,b), (ag,bg) — Q(ag,by), and(A,\")—2(\,\"). Then
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FIG. 1. Propagators and vertices of the theory.

_ —2A
S= J dtf ddx[i(at -V?)a+b(d, - 6V?b+ Naa? + \a%a? - = - +
_ - _ (c)
+2)'Qbab+ 2\"abab - (a&, + bby) &(t) . (11)
The Feynman diagrams corresponding to the action in Eq. _oNQ
(11) are shown in Fig. 1. ¢ ———— = @-----=-- + ----
We are interested in the mean densityBoparticles in the .
limit of large time, as the survival probability is proportional (@) S

to the mean density. The evolution of mean densityAof

particles(a) is independent of the statistics Bfparticles and FIG. 2. Diagrammatic form of mean field equations farmean

particle density(b), (b) mean density o8 particles(b), (c) G\N

mf

decays at large timetsas[14] and(d) GF,
92, d<2,
(@ ~1tln®), d=2, (12) b line, respectively. We denot@),,; and({b) by thick solid
1 4>2. lines and thick dashed lines, respectively. The integral equa-

tions satisfied bya); and (b); are presented in diagram-
matic form in Figs. 2a) and 2b) correspondingly. Analyti-

Ill. COMPUTATION OF THE PERSISTENCE EXPONENT cally,

USING MEAN FIELD AND SMOLUCHOWSKI t
APPROXIMATIONS (@) = 39— A J dt’(a(t)2,
0

The perturbative expansion @) in powers of\ can be
constructed using the Feynman diagrams shown in Fig. 1 ;
[23]. Diagrammatically{a)((b)) is the sum of all Feynman (b)) = bg - 2)\’Qf dt’(@a(t’))mgb(t’))me-
diagrams with one outgoing (b) line, respectively. Clearly, 0
there is an infinite number of diagrams contributing(&
and(b). These diagrams can be grouped together accordin(ga
to the number of loops that they contain, thus giving rise to
the loop expansion. Lei=2-d. A simple combinatorial ar- ada) = = \a)?, (13)
gument shows that the contribution from fjlzdilaé;ravn\;hwith
loops is proportional tay(t)", whereg(t) =\t¢ . en ,
e<FC)), thepm:in contriblcﬁion téa) andg<b> comeé from prop- db) =~ 2QN"(b)(a), (14)
erly renormalized tree level diagramsliagrams without iy which one can easily recognize the rate equations of the
loops. When >0, the loop expansion fails since for large model. Thus, the identification of tree-level truncation with
times g(t) is no longer a small perturbation parameter. Wemean field approximation is justified.

therefore conclude that 2 is the upper critical dimension. For  Equations(13) and(14) are easily solved, yielding
d<2 we will use the formalism of perturbative renormaliza-

After differentiating with respect to time, these equations
n be rewritten in differential form as

tion group to convert the loop expansion into @aaxpansion )
and calculate the scaling exponents as a series in (@(t))mi = 1+Nagt’ (15

A. Tree-level diagrams bo
O)m="——"" (16)

In d<2 and small times, tree diagrams give the main
contribution to the survival probability. L&), and (b)ms
be mean field densities given by the sum of contributionsvherea, andb, are the initial densities oA andB particles,
coming from tree diagrams with a single outgoimdine and  respectively. Thus,

(1+ )\aot)ZQ)\’/)\ !
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of each other(see[2,17] for a more detailed discussipn
6(5,Q) = Q4 d>2. (170 Knowing the first return probabilities of random walks, one
obtains ford<2
The result is explicitly dependent o, while being inde-
pendent ofé and describes the reaction-limited regime of the
problem. It should be mentioned here that the above result is a2
valid only in the limit when the reaction rates are the small- , (1_+5> dr2-1
: . _ : N\’ ~ constX t . (29
est parameters in the problem, i.&, \’ <Id 2 wherel, is

the lattice spacing. In the other limit when the lattice spacin

is the smallest parameter in the problem, the exponents %{ote that the facto(1+6)/2, which often appears in our
modified to[24] answers is just the effective diffusion coefficient in the prob-

lem. In d=2 additional logarithmic corrections appear and

\ ~ constx t¥271, (23

05,0 =Q(1+0), 132<A )\, d>2. (19

const
In order to estimate the validity of the mean field approxi- T ne (25)
mation ind=2, the one-loop corrections to the mean field
answer have to be evaluated. In calculating loop corrections constx (1 + &)
to Egs.(15) and (16), we are faced with the problem of N~ (26)

summing over an infinite number of diagrams containing a 2 Inf[(1 +9)/2]t}

given nl_meer of Io_ops. This problem can be simplified by Replacing\ and\’ in Egs.(13) and(14) by the effective
introducing mean field propagators, which are sums of alkeaction reaction rates, and solving @), we obtain

tree diagrams with one incoming line and one outgoing line.

Expressed in terms of these mean field propagators, there are Q@ + 212, d<2,
only a finite number of diagrams with a fixed number of  (b)g~§ [ In(t) |1+
loops. <—) [In(p)]QEromi@ar2l = q=2,
Let GNN andG"? be mean field propagators. The integral t
equations satlsfled by them are presented in diagrammatic (27)

form in Figs. Zc) and 2d). These equations have the follow-

) - ) where(b)s denotes the mean density Bfparticles obtained
ing analytic forms:

from the Smoluchowski approximation. In order to obtain

N ~ t - Eq.(27) we used the decay laws for the densityAgbarticles
mt (2|1) = G1(2]1) —27\f dtf ddX Ga1(2%,1) as in Eq.(12), which also follow from the Smoluchowski
k! R approximation. In particular, the Smoluchowski theory’s pre-
X(@a(t))Gmr (Xt 1), (19)  diction for ¢ is
1+6 d/r2
05(5,Q):dQ<T> , d<2. (28)

~ 2 ~
GH2]11) = G421) —ZA’QJ dtJ ddf( G(2|%,1)
R This answer ford depends ord, Q, and the space dimension-
X (a(t))Gi(X,t1), (20)  ality d. It does not, however, depend oanand \’. Thus,
unlike the mean field answer E@l7), it has the correct
where1=(%;,t),2=(%,,t,), andGp, is the Green’s function universality properties for a quantity describing reaction-
of the linear diffusion equation with diffusion constadt  diffusion systems in the diffusion-limited regime. However,

The solutions to these equations are the Smoluchowski result differs considerably from the cor-
(@) \ 2 rect result wherQ nears 1. For example, in one dimension
NN(2J1) = <;mf> G,(2)1), (21) 041,1)=1.0 while§(1,1)=1.5[see Eq(3)]. For more com-
(@(ty) )me parisons, see Sec. IV A. It is not clear how one can improve
the Smoluchowski approximation. The renormalization
a(t 2QNIN group formalism, although more involved, provides a sys-
mi(2/1) = (2 Eé;;:;) Gy(2/1). (22 tematic way to go beyond the Smoluchowski approximation.

C. One-loop diagrams

The rate equation results do not depend on the diffusion
coefficients of the particles or the dimensionality of the am-

Before presenting the renormalization group calculatiorbient space. These parameters appear in the one-loop correc-
of 6(5,Q), we briefly discuss a method commonly used totions to the tree-level answers. Using the mean field propa-
study fluctuation effects in reaction-diffusion systems,gators and densities, it is easy to classify all the one-loop
namely, the Smoluchowski approximation. The essential idediagrams contributing t¢b). These are shown in Fig.[25].
of the Smoluchowski approach is to relate the reaction rateSkipping the computations, we present the final answers for
N\ and )\’ to the diffusion rates. One assumes that particlesontributions corresponding to each of the Feynman dia-
react instantaneously when they come within a fixed radiugrams in the limitag— o°:

B. Smoluchowski approximation
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tions for the mean density d particles. There were two

- - - relevant couplings for the theory: the reaction ratand the
. initial density by. The anomalous dimension @b(t)) was
AN attributed to the renormalization af,.
. This approach turns out to be very complicated widen
‘. # 1. This is due to the explicit dependence of the classical
(©) ¥ scaling dimension ofb(t)) on A and\’. Further complica-
-= N tions arise due to noncommutativity of the—~0 and a,
\ — o limits, which leads to an apparent ordere singularity
‘\ in the one-loop correction t(h(t)) [see Eq(33)].
(b) L These problems are circumvented by analyzing the large
_ _ time asymptotic behavior of the logarithmic derivative of
FIG. 3. One-loop corrections to the mean field resuli(fmr (b(t)), rather than(b(t)) itself. It follows from Eq.(33) that
(@)= 3201 "ot 29 tain[(b(t)]} = I1(0), (34
M (@A )2 N Am(1 + 8)]1¥2eX(e + 2)
where
8Q°\"%by(1 + )t
0= N xt)ZQm([)4 (1+08)]92 H(oxoal. 0 1 2N AVEE A L
T € t)=-— — +
% ® Q N AmY2 | N1+ 9 e(e+2)
- 256Q\ " bote'? 279232 N (1+8)9%(5
o= 250, R, . 52 VOB | s
(aht)2 N 8m)922(e+ 2)%(e + 4) e(e+2)%(e+4) 2\

where (a), (b), and(c) refer to the contributions from dia- (39
grams in Figs. @&)—3(c), respectively, and
The large time asymptotic behavior Hf(t) can be obtained
f(8)=1-25+ 25In<i> by solving the Callan-Symanzik equation with initial condi-
1+6 tions given by the right-hand side of E(5) regularized at
1 In(1-u) some reference tim&, (see Ref.[22] for a review. The
+(1- 52)f du———— (32)  coefficients of the Callan-Symanzik equation are determined
(5-1)/(5+1) u by the law of renormalization of all the relevant couplings of
. I ) the theory. Power counting analogous to that carried out in
ng'rngqt?f;e v(;geo_L)c'zgi?] ?r??ﬁgbl?#]?gj_t)owthe mean field aNRef. [9] shows that there are only two relevant couplings of
e the theory which determine the large time behaviod gf)

A 8QN't9? A\’ 1 in d=2: the reaction rates and\’. We mention here that
(b(t)) = 20 + (@m) %2 | N1+ 0P e(e+2) I1(t) is simply related to the polarization operator used in
Ref. [9].
32 1 QN'(1 +8)9%() Let go=\tg? and gy=Atg? be the dimensionless reaction
T 22 e+ 2)%(e+ 4) o\ rates. We choosg in such a way thagy,gi<1. The way in

_ _ which reaction rates get renormalized by interactions has
+two and higher loop corrections, (33)  been worked out in Ref2,14. The renormalized reaction

where A:bol(ao)\)ZQ”N We see that if\~\’, then the ratesgr and gy, are related ta@, andg, as follows:
mean field answer Eq(l7) is correct ind<2 only if

Q\t92< 1. Clearly, this condition breaks down in the limit of Or= % (36)
large times ind<2. R™1+gyg.’

IV. PERTURBATIVE COMPUTATION OF 6(6,Q) NEAR 0L= 9% (37)
d=2 USING THE RENORMALIZATION GROUP R71 +0y/g '

METHOD

In this section, we calculate the large time behaviofpf ~ Hereg- andg. are the nontrivial fixed points of the renor-
The loop expansion fofb(t)) fails at large times i< 2. To malization group flow in the space of effective coupling con-
. . ; . stants, and are given by
extract the large time behavior @i(t)) in d<2 we will use
the formalism of the perturbative renormalization group. a2
The renormalization group formalism used in Ré&9] g = (8) (38)
for the cases=1 was based on the Callan-Symanzik equa- 2I'(el2)’
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_[4m(1 + )]92 r
T 2l(e2) (39)

whereI'(x) is the Euler Gamma function. The renormaliza-

tion of both coupling constants is due to the same physical__  ,

effect—the recurrence of random walksdrs 2. <
I1(to) expressed in terms @z andgi has the following &

!

0.8

0.4
form:
H(to):_ng_Fe+%{gR(y—l) L 5-2y, Qui(9) 0.2
g 7 LOr(1+9) 4 20r
+ O(e)} +0(gR), (40) ' T Q

wherey is the Euler constantI(t) regarded as a function of ~ FIG. 4. The one-loop answ¢Eg. (45)] is compared with the

gr andgy, is nonsingular a&=0. As a result this expression is exact result in one dimension wheix0 [Eq. (2)]. The solid line
valid for d<2. The lack oft, dependence dfi(t) for t >t is corresponds to the exact answer, the dashed line to one loop, and
expressed by the following renormalization gro(@allan- e dot dashed line to the Smoluchowski regalg. (27)].

Symanzik equation:

d Blor) 0 PBlop) 9 one dimension is given in Eq2), while that for 6(5,1) is
T 2 igm + 2 agL =0,  (4)  given in Eq.(3). Figures 4 and 5 show the results f6+0
R and Q=1, respectively. Thes=-expansion result is seen to
where B(gr) =—2tydgr/ dty and B(gR)=—2todgg/ oty are the  compare very well with the exact result. On the other hand,

beta functions the Smoluchowski results fail fo@ larger than 1/2 when
6=0, and for all6 whenQ=1. It should be noted that when
B(gR) = gR(gR——g*)e, (42) 0 becomes large the expansion will fail. This is because in
O- deriving thee expansion we wrote E@28) as a series i@ to
first order. This expansion fails whehis large.
. OR(OR—O)e It is worth mentioning that, even though the persistence
B(gR) = T (43) exponent turns out to be universal, the amplitude in the term

governing corrections to scaling is nonuniversal. The correc-
We will now solve Eq.(41) with the initial condition given tions toll(t) due to nonconvergence to a fixed point have the
by Eqg. (40) to obtain the large time asymptotic behavior of form C/t€?, where the constar@ depends on the bare reac-
I1. We then extract the large time asymptotic behavior oftion rates. Solving Eq34) with I1(t) modified by these extra
(b(t)) by solving Eq.(34). terms, we find corrections to scaling of the form
-(2C/ e)t"%¢2, In two dimensions a similar mechanism leads
A. Survival probability in d<2 K)/ Ig())nuniversality of the logarithmic correctiorisee Sec.

At large times, the solutions of the Callan-Symanzik
equation(41) are governed by the stable fixed points of the
functions. Ind< 2, these ar@g=g. andg;=g:. It then fol-
lows that

3.5

1+6 3 1+6 3r
H(t):—2Q(1+5)+eQ(1+5){In +§+Q7f(5)}
2.5}
+O(E,1797). 449 -
= 2
Substituting Eq(44) into Eq.(34) and solving foxb(t)), =
we obtain theO(e) result for ¢: 1.5}
1+6 3 1+6 1+6)f(5 [
e ){2_6{_“” el )()}m(ez)] :
2 2 2 2 ‘
0 2 4 6 8 10
(45) s
where the functiorf(9) is as in Eq.(32). FIG. 5. The one-loop answéEq. (45)] is compared with the

We now compare the one dimensional result obtained byxact result in one dimension wh@=1 [Eq. (3)]. The solid line
putting e=1 in Eq.(45) with exact results in one dimension corresponds to the exact answer, the dashed line to one loop, and
for special values o6 andQ. The exact result fod(0,Q) in the dot dashed line to the Smoluchowski reggky. (27)].
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B. Survival probability in d=2

The upper critical dimension of our model is 2. The non-
trivial fixed points of theB functions Egs.(42) and (43)

vanish atd=2. It is then expected that the rate equation re-

sults give the correct large time behavior of the mean dens

ties, perhaps modulo logarithmic corrections. This turns out

to be incorrect. The complication comes from the fact that
predicted by the mean field theofgee Eq(17)] is nonuni-
versal and depends on the ratio of coupling constggisnd
gr. Each of these couplings is marginally relevant in two

dimensions and flows under renormalization group transfor-

mations to 0 agIn(t)]™. Their ratio flows to a finite univer-

sal value which determines the algebraic decay of the sur-

vival probability. However, the deviation from this universal
value vanishes with time &/In(t), whereC is a nonuniver-

PHYSICAL REVIEW E 70, 036111(2004)

10° . .
- 033
=z
9 0.32
. I £ 031
i- 10k 1

-3 L 1
10
10 10° 10*
t

sal constant. This results in nonuniversal logarithmic correc-

tions to the universal power law decay of survival probabil-
ity.

We need to solve the Callan-Symanzik equatiéi) with
coefficients calculated at=2:

2

FQo2= 5 (40
'
g/Z

B(Q')g=2= w149 (47)

Then Eq.(41) reduces to

9 g& o 29
R 7 gg=o, (49
dt 4mdgr 2m(1+6) gk
which has to be solved with the initial condition given by Eq.
(40) att=ty,e=0. The solution is

201+9[3 . Q
In(t/ty) {4+ o (@ +m(l+o)

x(i-L)]m(i). (49)
gr  (1+8)0r In?(t)

The nonuniversal term in Eqg49) is proportional to
1/gr-2/[(1+6)gr]. It is convenient to express this ampli-
tude in terms of bare couplings. In two dimensions,

It =-Q(1 +4) +

1 2 1 2 In[(1 +6)/2]
S + . (50
Or (1+9)gr [S]3} (1+6)gy 2m(1+9)

In d<2, Eqg.(50) has to be modified by omitting the loga-
rithmic term on the right hand side.

Solving Eq.(34) with Eq. (49) substituted for the right
hand side and taking E@50) into account, one finds that

[grIN(t/to)]* 1 )
(ga)‘?ﬂ*‘ﬁ{ +O(|n(t/to) } (6D

(b(t)) = constXx

where

FIG. 6. The variation of the mean density Bfparticles in two
dimensions with time. The simulations were done on a 3200
X 3200 lattice forQ=0.5 andé=0. The data have been averaged
1000 times. In the inset, the variation @\t with time is shown.
The power of the logarithm in the best fit is 0.23+0.03. The fitted
curve cannot be distinguished from the data.

a:M{S +Q(1+6)f(5)+2|nm}
2 2
o/ L__2 )
+2mQ(1 + 9) ()\, Lron) (52

Thus, in two dimensions, the power law exponent is univer-
sal and independent of and\’. However, the logarithmic
corrections are nonuniversal and depend on the microscopic
reaction rates\.’ =g, and A=g,. However, most simulations
are done in the limit when the reactions are instantaneous. In
this limit, the nonuniversal term in E@52) is zero.

The logarithmic corrections in E@¢52) are different from
the logarithmic corrections calculated for tQe=1/2 case in
Ref. [2]. This discrepancy is due to the fact that only renor-
malized tree-level computations were done[2h, while to
obtain the correct logarithmic dependence one-loop correc-
tions have to be taken into account.

We also mention that, if one were to ignore the contribu-
tion from one-loop diagrams, then the logarithmic correc-
tions would be identical with the logarithmic corrections ob-
tained from the Smoluchowski approximatifsee Eq(27)],
and will be different from the logarithmic corrections ob-
tained from the renormalized tree level as in Rél.

We now study logarithmic corrections numerically. First,
consider the case when the microscopic reactions are instan-
taneous, i.eA=\’=o. In this limit, the nonuniversal term in
Eq. (52) is equal to zero. The Monte Carlo simulations were
done for this case on a two-dimensional lattice of size
3200x% 3200 with periodic boundary conditions. As the reac-
tions are instantaneous, the maximum number of particles at
a site is 1. The simulations were done &0, i.e., immobile
B particles. The results fa=0.5 andQ=1.0 are shown in
Figs. 6 and 7, respectively. FQ=0.5,4=0.23+0.03, which
compares well with the theoretical value of approximately
0.22 in Eqg.(52). Note that the renormalized tree-level an-
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t FIG. 8. The variation of the mean density Bfparticles in two

FIG. 7. The variation of the mean density Bfparticles in two dimensions with time. The simulations were done on a>000
dimensions with time. The simulations were done on a 320dgttlce for Q=0.5 and 6=0. The data have been averaged 1000
X 3200 lattice forQ=1.0 ands=0. The data have been averaged Mes:

1000 times. In the insgt, thg variation df)t with time is shown. only on 8 andQ and is independent of,\". The renormal-
The power of the logarithm in the best fit is 0.08+0.04. ization group formalism provided a systematic way of calcu-
lating the survival probability for the entire parameter space.
swer is «=0.5 [2]. For Q=1.0, the numerical value is In two dimensions, we computed the logarithmic correc-
0.08+0.04, which compares well with the theoretical valuetions to the power law decay. It was shown that to compute
of approximately 0.07. This answer also deviates signifithe correct logarithmic factors one had to include contribu-
cantly from the renormalized tree-level value of 1.0. tions from one-loop diagrams and not just the tree-level dia-
Second, we study the logarithmic corrections for finitegrams as was done in earlier work. The behavior of the sur-
reaction rates to test the nonuniversal term in(8). In this ~ Vival probability in two dimensions is surprising. First, the
case the lattice size is 980900. The results fors=0,Q  Power law decay is universal and thus does not coincide with
=0.5, and different reaction rates are shown in Fig. & If the rate equation result, even though?2 is the upper critical
=16,\'=8, then the nonuniversal term in E2) is zero dimension. Seg:ond, the logarithmic corrections to the power
anda~0.22 as in the case of infinite reaction rates. This is@W aré nonuniversal and depend on the reaction rates. This
consistent with the dashed line in Fig. 8 being parallel to théS _contrary to the general expectation that kinetics of
solid line. If howevern=8 A’ =8, then the theoretical value reaction-diffusion systems are diffusion limited below the

f o is —0.17. While the numerical orecision of our experi- upper critical dime_nsion._Both the qnivgrsality of.the power
of a1 —U.17. YVhile thé numerical precision ot our eXpert- ., anq the nonuniversality of logarithmic corrections in two
ment is insufficient for a reliable determination of the abso-gjengjons can be traced to the fact that the rate equation
!ute valut_a Qfa, its sign is negative, in line with the theoret- exponent is given by the ratio of microscopic rates, which
ical prediction. are both marginally relevant in two dimensions.

From the renormalization group point of view, by study-

V. SUMMARY AND CONCLUSIONS ing the logarithmic derivative of the mean densityBpar-
_ ) ticles, we have considerably simplified the schemes used in

In summary, we calculated the large time behavior of therefs.[2,6,9. While the exponents are calculated only up to
survival probability of a test particle in a system of coagu-first order ine, the renormalization group method remains
lating and annihilating random walkers @<2. In one di- the only systematic way of computing the exponents when
mension, this generalizes the site persistence problem in then exact solution is not available.
g-state Potts model evolving via zero-temperature Glauber
dynamics. The survival probability was shown to decay as a ACKNOWLEDGMENT
power law. Ind< 2, the exponen# characterizing this power R.R. would like to acknowledge support from NSF Grant
law was shown to be universal, in the sense that it dependdo. DMR-0207106.
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